Carbon dioxide added late in inspiration reduces ventilation-perfusion heterogeneity without causing respiratory acidosis.
نویسندگان
چکیده
We have shown previously that inspired CO2 (3-5%) improves ventilation-perfusion (Va/Q) matching but with the consequence of mild arterial hypercapnia and respiratory acidosis. We hypothesized that adding CO2 only late in inspiration to limit its effects to the conducting airways would enhance Va/Q matching and improve oxygenation without arterial hypercapnia. CO2 was added in the latter half of inspiration in a volume aimed to reach a concentration of 5% in the conducting airways throughout the respiratory cycle. Ten mixed-breed dogs were anesthetized and, in a randomized order, ventilated with room air, 5% CO2 throughout inspiration, and CO2 added only to the latter half of inspiration. The multiple inert-gas elimination technique was used to assess Va/Q heterogeneity. Late-inspired CO2 produced only very small changes in arterial pH (7.38 vs. 7.40) and arterial CO2 (40.6 vs. 39.4 Torr). Compared with baseline, late-inspired CO2 significantly improved arterial oxygenation (97.5 vs. 94.2 Torr), decreased the alveolar-arterial Po2 difference (10.4 vs. 15.7 Torr) and decreased the multiple inert-gas elimination technique-derived arterial-alveolar inert gas area difference, a global measurement of Va/Q heterogeneity (0.36 vs. 0.22). These changes were equal to those with 5% CO2 throughout inspiration (arterial Po2, 102.5 Torr; alveolar-arterial Po2 difference, 10.1 Torr; and arterial-alveolar inert gas area difference, 0.21). In conclusion, we have established that the majority of the improvement in gas exchange efficiency with inspired CO2 can be achieved by limiting its application to the conducting airways and does not require systemic acidosis.
منابع مشابه
Ultra-protective ventilation and hypoxemia
Partial extracorporeal CO2 removal allows a decreasing tidal volume without respiratory acidosis in patients with acute respiratory distress syndrome. This, however, may be associated with worsening hypoxemia, due to several mechanisms, such as gravitational and reabsorption atelectasis, due to a decrease in mean airway pressure and a critically low ventilation-perfusion ratio, respectively. In...
متن کاملThe lung and carbon dioxide: implications for permissive and therapeutic hypercapnia.
Although acute respiratory acidosis may be a sign of impending respiratory failure in spontaneously breathing patients, it is commonly encountered in intubated patients with acute lung injury (ALI). This is especially the case now that limiting tidal volumes and airway pressures have been proven to reduce mortality in ALI, presumably by reducing additional lung injury caused by mechanical venti...
متن کاملCarbon dioxide in the critically ill: too much or too little of a good thing?
Hypercapnia and hypocapnia commonly complicate conditions that are present in critically ill patients. Both conditions have important physiologic effects that may impact the clinical management of these patients. For instance, hypercapnia results in bronchodilation and enhanced hypoxic vasoconstriction, leading to improved ventilation/perfusion matching. Hypocapnia reduces cerebral blood volume...
متن کاملClinical experience with a pumpless extracorporeal lung assist device.
We present three patients with respiratory failure in whom conventional mechanical lung ventilation resulted in unacceptably high levels of carbon dioxide, severe acidosis and high vasopressor requirements. A pumpless arteriovenous extracorporeal carbon dioxide removal device (Novalung) was inserted. Arterial carbon dioxide levels were reduced rapidly with a corresponding increase in pH, reduct...
متن کاملPulmonary NO synthase inhibition and inspired CO2: effects on V'/Q' and pulmonary blood flow distribution.
Inhaled carbon dioxide decreases ventilation/perfusion ratio (V'/Q') heterogeneity in dogs. The aim of this study was to test whether inhaled CO2 improves the V'/Q' by inhibition of nitric oxide production and whether inhibition of endogenous NO production in the lung alters gas exchange and V'/Q' matching. Eleven healthy dogs were anaesthetized and mechanically ventilated. The multiple inert g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2004